USN

First Semester B.E. Degree Examination, December 2012 **Engineering Mathematics - I**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
- 3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

Choose your answers for the following: 1

(04 Marks)

If
$$y = \sin^2 x$$
, then y_n is
$$A = 2^{n-1} - 1 - 2^{n-1} - 1 - 1 = 1$$

A)
$$-2^{n-1}\cos\left(2x+\frac{n\pi}{2}\right)$$

B)
$$2^{n-1}\cos\left(2x+\frac{n\pi}{2}\right)$$

C)
$$2^{n-1} \sin\left(2x + \frac{n\pi}{2}\right)$$

D)
$$-2^{n-1}\sin\left(2x+\frac{n\pi}{2}\right)$$

If $y = x\log(x+1)$ then y_n is

A)
$$\frac{(-1)^{n-1}(n-1)!x}{(x+1)^{n+1}}$$

B)
$$\frac{(-1)^{n-1}(n-2)!(x+n)}{(x+1)^n}$$

C)
$$\frac{(-1)^{n-1}(n-2)!(x+n)}{(x+1)}$$

D) None of these.

The angle of intersection of the curves $r = \frac{a\theta}{1+\theta}$, $r = \frac{a}{1+\theta^2}$ is iii)

A)
$$\cos^{-1} 3$$

B)
$$\cot^{-1} 3$$

C)
$$\tan^{-1} \frac{1}{3}$$

iv) Pedal equation of the curve $r^m \cos m\theta = a^m$ is

A)
$$r^{m-1} = a^m$$

$$B) p^2 = a^m r^{m-1}$$

C)
$$pr^{m-1} = a^m$$

b. Find y_n , if $y = e^{-3x} \cos^3 x$ If $y^{1/m} + y^{-1/m} = 2x$, prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 + m^2)y_n = 0$

(04 Marks) (06 Marks)

Find the angle between the curves $r = a \log \theta$, $r = a / \log \theta$.

(06 Marks)

2 Choose your answers for the following: (04 Marks)

i) If
$$u = \frac{x^2}{y}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

A) 2u

B) u

C) 0

D) 1

ii) If u is a homogeneous function of order n is x&y then
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$$
 is

A) nu

B) n²u

C) n(n-1)u

D) n(n+1)u.

iii) If
$$x = r\cos\theta$$
, $y = r\sin\theta$ then $\frac{\partial(x,y)}{\partial(r,\theta)}$ is equal to

C)
$$\frac{1}{r}$$

iv)
$$\frac{\delta x}{x}$$
 is called

A) Absolute error B) Relative error C) Percentage error D) Absolute & relative error.

b. If
$$u = \cos ec^{-1} \left[\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}} \right]^{1/2}$$
, prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} - \frac{\tan u}{12} \left[\frac{13}{12} + \frac{\tan^{2} u}{12} \right]$$
 (04 Marks)

c. If
$$u = \frac{yz}{x}$$
, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$ (06 Marks)

d. If the H.P. required to propel a steamer varies as the cube of the velocity and square of the length prove that a 3% increase in velocity and 4% increase in lengths will require an increase about 17% H.P. (06 Marks)

3 Choose your answers for the following:

(04 Marks)

i)
$$\int_{0}^{\pi} \sin^{7} x \, dx$$
 is equal to

B)
$$\frac{32\pi}{35}$$

C)
$$\frac{32}{35}$$

D)
$$\frac{35\pi}{35}$$

ii)
$$\int_{0}^{\infty} \frac{dx}{(1+x^2)^{7/2}}$$
 is equal to

A)
$$\frac{8}{15}\pi$$

B)
$$\frac{8}{15}$$

C)
$$\frac{4}{15}$$

D)
$$\frac{15}{8}$$

iii) The shape of the curve $r^2 = a^2 \cos 2\theta$ is

D) Lemnisate of Bernoulli

A) Three leaved B) cycloid C) cardiode iv) The curve $y^2(a-x) = x^2(a+x)$ passes through A) origin B) Node C) x-axis

C) x-axis

D) y-axis

b. If
$$I_{m,n} = \int_{0}^{\pi/2} \sin^m x \cos^n x \, dx$$
 $(m > 0, n > 0)$; show that $I_{m,n} = \frac{n-1}{m+n} I_{m,n-2}$ (04 Marks)

c. Evaluate
$$\int_{a}^{a} (x^2 + a^2)^{5/2} dx$$

(06 Marks)

Trace the curve $r = a \sin 3\theta$ d.

(06 Marks)

Choose your answers for the following:

(04 Marks)

Length of one arch of the cylind x = a(t - sint), y = a(1 - cost) is

$$A) - 8a$$

C)
$$\sqrt{8}$$
 a

D)
$$\frac{1}{8a}$$

Surface area of revolution about x-axis is s =

A)
$$2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

B)
$$\pi \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

C)
$$2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dy$$

D)
$$\pi \int \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

iii) Area of the cardiode $r = a(1+\cos\theta)$ is

A)
$$\int_{0}^{\pi} r^{2} d\theta$$
 B) $2 \int_{0}^{\pi} r d\theta$

B)
$$2\int_{0}^{\pi} r d\theta$$

C)
$$\frac{1}{2} \int_{0}^{\pi/2} r \cos \theta \, d\theta$$
 D) $2 \int_{0}^{\pi} \cos \theta \, d\theta$

D)
$$2\int_{0}^{\pi}\cos\theta d\theta$$

		A) $2\sqrt{3}$	B) $-4\sqrt{3}$	C) $\frac{1}{4}\sqrt{3}$	D) $4\sqrt{3}$
b. с.	Find		the asteroid $x^{2/3} + y^{2/3}$ f he solid generated wh		(04 Marks) l + cosθ) revolved (06 Marks)
d.	Prov	we that $\int_{0}^{\pi/2} \frac{\log(1+y\sin x)}{\sin^2 x}$	$\frac{2}{x} = \pi \left[\sqrt{1+y} - 1 \right]$		(06 Marks)
			PART – B		
a.	Cho i)	ose your answers for Homogeneous diffe substitution	the following: erential equation can	be reduced to a dif	(04 Marks) ferential equation by
	ii)	A) x + y = v	B) $y = vx$ y)xdy = 0 then I.F. is	C) xy = v	D) x - y = v.
		$A) 2x^2y^2$	B) x^2y^2	C) $\frac{1}{2x^2v^2}$	D) $\frac{2}{x^2 y^2}$
	iii)	A) $y = ae^{-2x}$	= c represents the orth B) $x^2 + 2y^2 = a^2$	C) $xy = a$	D) $x + 2y = a$
	iv)	The general solution	of the differential equ	nation $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$	is
		A) $\sin \frac{y}{y} = c$	B) $\sin \frac{y}{x} = cx$	C) $\cos \frac{y}{x} = cx$	D) $\cos \frac{y}{y} = c$
	Solve $(x - y\log y + y\log x)dx + x(\log y - \log x)dx = 0$ (04 Mari				
b.	Solv	e (x – ylogy + ylogx)	dx + x(logy – logx)dx :	= 0	(U4 Marks)
		e $(x - y\log y + y\log x)$ e $x^3 \frac{dy}{dx} - x^2 y = -y^4$		= 0	(04 Marks)
	Solv	•	cosx	= ()	
c.	Solv Test Cho	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for	$cos x$ $r^n = a sin n\theta$. the following:	= ()	(06 Marks)
c. d.	Solv Test Cho	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for The series $\frac{2}{1^2} - \frac{3}{2^2} + \frac{3}{2^2}$	$cos x$ $r^n = a sin n\theta.$ the following: $-\frac{4}{3^2} - \frac{5}{4^2} + \dots is$		(06 Marks) (06 Marks) (04 Marks)
c. d.	Solv Test Cho i)	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for The series $\frac{2}{1^2} - \frac{3}{2^2} +$ A) Conditionally co	$cos x$ $r^n = a sin n\theta.$ the following: $-\frac{4}{3^2} - \frac{5}{4^2} + \dots is$	B) Absolutely conve D) None of these.	(06 Marks) (06 Marks) (04 Marks)
c. d.	Solv Test Cho i)	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for The series $\frac{2}{1^2} - \frac{3}{2^2} +$ A) Conditionally co C) Divergent $\sum \left[1 + \frac{1}{n}\right]^{-n^2}$ is	cos x $r^n = a \sin n\theta$. the following: $\frac{4}{3^2} - \frac{5}{4^2} + \dots$ is is is is	B) Absolutely convo D) None of these.	(06 Marks) (06 Marks) (04 Marks) ergent
c. d.	Solv Test Cho i)	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for The series $\frac{2}{1^2} - \frac{3}{2^2} +$ A) Conditionally co C) Divergent $\sum \left[1 + \frac{1}{n}\right]^{-n^2}$ is A) Oscillatory	cos x $r^n = a \sin n\theta$. the following: $-\frac{4}{3^2} - \frac{5}{4^2} + \dots$ is nvergent	B) Absolutely convergence D) None of these. C) Divergent D) A	(06 Marks) (06 Marks) (04 Marks) ergent
c. d.	Solv Test Cho i)	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for The series $\frac{2}{1^2} - \frac{3}{2^2} +$ A) Conditionally co C) Divergent $\sum \left[1 + \frac{1}{n}\right]^{-n^2}$ is A) Oscillatory	cos x $r^n = a \sin n\theta$. the following: $\frac{4}{3^2} - \frac{5}{4^2} + \dots$ is is is is	B) Absolutely convergence D) None of these. C) Divergent D) A	(06 Marks) (06 Marks) (04 Marks) ergent
c. d.	Solv Test Cho i) ii)	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for The series $\frac{2}{1^2} - \frac{3}{2^2} + \frac{3}{2^2} $	cos x $r^{n} = a \sin n\theta.$ the following: $-\frac{4}{3^{2}} - \frac{5}{4^{2}} + \dots$ is nvergent B) Convergent $r^{n} = a \sin n\theta.$	B) Absolutely convergence D) None of these. C) Divergent D) And $\begin{bmatrix} u_n \\ u_{n+1} \end{bmatrix}$	(06 Marks) (06 Marks) (04 Marks) ergent
c. d.	Solv Test Cho i) ii)	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for The series $\frac{2}{1^2} - \frac{3}{2^2} +$ A) Conditionally co C) Divergent $\sum \left[1 + \frac{1}{n}\right]^{-n^2}$ is A) Oscillatory By Raabe's test $\sum u_n$	cos x $r^{n} = a \sin n\theta.$ the following: $-\frac{4}{3^{2}} - \frac{5}{4^{2}} + \dots$ is nvergent B) Convergent $r^{n} = a \sin n\theta.$	B) Absolutely convergence D) None of these. C) Divergent D) And $\begin{bmatrix} u_n \\ u_{n+1} \end{bmatrix}$	(06 Marks) (06 Marks) (04 Marks) ergent
c. d.	Solv Test Cho i) ii)	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for The series $\frac{2}{1^2} - \frac{3}{2^2} + \frac{1}{2^2} $	the following: $\frac{4}{3^2} - \frac{5}{4^2} + \dots$ is nvergent B) Convergent $\lim_{n \to \infty} \sin n \to 0$ B) Greater than one by Lebnitz's test	B) Absolutely convergence B) None of these. C) Divergent $\begin{bmatrix} u_n \\ u_{n+1} \end{bmatrix}$ C) Less than one B) Divergence	(06 Marks) (06 Marks) (04 Marks) ergent
c. d.	Solv Test Cho i) ii)	e $x^3 \frac{dy}{dx} - x^2y = -y^4$ for self orthogonality ose your answers for The series $\frac{2}{1^2} - \frac{3}{2^2} + \frac{1}{2^2} $	the following: $\frac{4}{3^2} - \frac{5}{4^2} + \dots$ is nvergent B) Convergent $\lim_{n \to \infty} \sin n \to 0$ B) Greater than one by Lebnitz's test	B) Absolutely convergence D) None of these. C) Divergent $ \begin{array}{c} U_{n} \\ \infty \\ \end{array} $ C) Less than one B) Divergence D) Convergency	(06 Marks) (06 Marks) (04 Marks) ergent

iv) Length of the loop of the curve $x = t^2$, $y = t - t^3/3$ is

5

6

- c. Find the nature of the series $\sum_{n=0}^{\infty} \left(1 \frac{3}{n}\right)^n$ (06 Marks)
- Test the series $x + \frac{x^2}{2!} + \frac{x^3}{4!} + \frac{x^4}{4!} + \dots$ for absolute convergence. (06 Marks)
- Choose your answers for the following: 7

(04 Marks)

- The sum of the direction cosines of a straight line is
- B) one
- D) None of these.
- The equation of a straight line parallel to the x-axis is given by

A)
$$\frac{x-a}{1} = \frac{y-b}{1} = \frac{z-c}{1}$$

B)
$$\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{1}$$

C)
$$\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$$

D)
$$\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$$

- iii) A line makes angles α , β , γ with the co-ordinate axes then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$

- iv) Three lines are coplanar if
 - A) They are concurrent
 - B) A line perpendicular to each other
 - C) They are concurrent and a line is perpendicular to each of them
 - D) None of these.
- Show that the angle between two diagonals of a cube is $\cos^{-1} \frac{1}{2}$ (04 Marks)
- Find the equation of the plane which bisects the line joining (3, 0, 5) and (1, 2, -1) at right (06 Marks)
- d. Find the shortest distance between the lines and its equations:

$$\frac{x-8}{3} = \frac{y+9}{16} = \frac{z-10}{7}$$
 and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$. (06 Marks)

Choose your answers for the following: 8

(04 Marks)

- Curl(\phiu) is equal to
 - A) ϕ grad u + u grad ϕ

B) gradø.u + ødiv u

C) $(\text{grad }\phi)\times u + \phi(\text{curl }u)$

- D) $(\phi \cdot \nabla)u + (u \cdot \nabla)\phi$
- ii) If $\operatorname{curl} F = 0$ then the vector F is said to be
 - A) solenoidal
- B) Rotational
- C) Irrotational
- D) Angular velocity

- iii) If $\overrightarrow{r} = xi + yj + zk$ then $\nabla \cdot \overrightarrow{r}$ is equal to

- C) 1
- D) 0

- iv) If $F = \nabla(x^3 + y^3 + z^3 3xyz)$ then curl F is

- A) 6(x + y + z) B) (x + y + z) C) 1 D) 0. Find the directional derivative of $\phi = xy^2 + yz^3$ at (1, 2, -1) in the direction normal to the surface x log $z y^2 = -4$ at (-1, 2, 1).
- c. Find the constants a and b such that

 $\vec{F} = (axy + z^3)i + (3x^2 - z)j + (bxz^2 - y)k$ is irrotational and find the scalar function such that (06 Marks)

d. If $A = 2x^2i - 3yzj + xz^2k$ and $\phi = 2z - x^3y$ find $A = \nabla \phi$ and $(A \times \nabla \phi)$ at (1, -1, 1). (06 Marks)